
艾思科蓝公众号
个人简述:
任志华,女,教授,博士生导师。2003年7月北京大学数学科学学院博士研究生毕业,获理学博士学位。博士学位论文获得北京大学优秀博士学位论文三等奖。2004年10月至今在北京工业大学应用数理学院从事教学科研工作。2006年10月至2007年1月,美国明尼苏达大学培训与交流。主要研究方向是常微分方程与动力系统、正规形理论及其应用。主要研究结果发表在J. Math. Anal. Appl,、C. R. Acad. Sci. Paris, Ser.I ,、BULLETIN DES SCIENCES MATHÉMATIQUES、Dynamical Systems、International Journal of bifurcations and chaos等刊物上。
科研工作:
代表性论文——1. Guo, Lingling Ren, Zhihua Polynomial normal forms for some germs of nonstrongly 1-resonant diffeomorphisms. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 13, 1550174, 8 pp.2. Ren, Zhihua Xia, Li Yang, Jiazhong On classification of the Poincaré type maps on R3. Bull. Sci. Math. 139 (2015), no. 5, 582–598.3. Ren, Zhihua Yan, Shuo Yang, Jiazhong Finite determinacy and polynomial normal forms for diffeomorphisms near a strongly 1-resonant fixed point. J. Math. Anal. Appl. 413 (2014), no. 1, 476–481.4. Ren, Zhihua Peng, Zhaoxia Smooth moduli-free normal forms of hyperbolic germs of diffeomorphisms. Dyn. Syst. 28 (2013), no. 2, 251–262.5. Ren, Zhihua Yang, Jiazhong Yu, Fuwang On conjugating equivalence of 0-resonant diffeomorphisms on R3. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013), no. 6, 1350100, 6 pp.6. Ren, Zhihua Peng, Zhaoxia On smooth conjugacy of hyperbolic diffeomorphism germs. Bull. Sci. Math. 137 (2013), no. 5, 584–588.7. Ren, Zhihua Smooth classification and linearization of hyperbolic vector fields on R 3. Ann. Differential Equations 25 (2009), no. 3, 343–347.8. Li, Chengzhi Ren, Zhihua Yang, Jiazhong Moduli-free normal forms and linearization of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 12, 3759–3764.9. Ren, Zhi Hua Smooth linearizability of some hyperbolic vector fields. (Chinese) Beijing Daxue Xuebao Ziran Kexue Ban 40 (2004), no. 1, 1–4.10. Ren, Zhihua Yang, Jiazhong On C1 classifications of hyperbolic vector fields. J. Math. Anal. Appl. 284 (2003), no. 1, 118–126.11. Ren, Zhihua Yang, Jiazhong On the C1 normal forms of hyperbolic vector fields. C. R. Math. Acad. Sci. Paris 336 (2003), no. 9, 709–712.
资料审核中
您的资料已提交成功!
我们的工作人员会将会在3-5个工作日内和您联系