您当前浏览器版本过低,为了不影响您的使用,建议您使用最新的谷歌浏览器、火狐浏览器、 360浏览器,更换浏览器后使用更流畅!(注意!双核浏览器请切换为极速模式)
400-607-9388
  • 代琦
  • 所属院校: 浙江理工大学
  • 所属院系: 生命科学学院
  • 职称: 副教授
  • 导师类型:
  • 招生专业: 生物学
  • 研究领域: (1)功能基因组分析;(2)生物信息智能化处理;(3)肿瘤早期分子诊断中的信息处理。
个人简介

个人简述:

代琦 博士、副教授、硕士生导师、科研实验中心主任、生物信息学学科组主任。2009年5月受聘于杭州电子科技大学生物医学工程与仪器研究所,2010年破格晋升副研究员,2011年调职到浙江理工大学生命科学学院。2008年荣获2006届博士生专项奖学金---“纪念向坊隆”村井隆奖学金,2011年入选浙江省“151”人才第三层次,2012年入选浙江省高校中青年学科带头人;2013年入选浙江理工大学“521”拔尖人才。主持国家自然科学基金项目3项、浙江省自然科学基金1项,其中包括国家自然科学基金青年-面上连续项目1项。发表各类科研论文35篇,其中SCI期刊收录35篇(第一作者SCI论文18篇,其中2区7篇)。开发生物学软件4个,共下载次数2000余次。2010年至今,担任国际期刊《Computational and Mathematical Methods in Medicine》(SCI期刊),《JournalofComputationalBiologyandBioinformaticsResearch》,《AmericanJournalofBioinformaticsandComputationalBiology》编委,浙江省生物信息学学会理事,浙江省信号处理学会会员。


科研工作:

一、科研项目

1.“联合序列结构特征和临床信息的多步修正宫颈癌HPV分型模型研究”国家自然科学基金,2014.1- 2017.12, 78万(负责人)

2.“与肿瘤蛋白质结构、功能有关的信息处理问题研究” 国家自然科学基金,基金号:61170316,2012.1- 2015.12, 52万(负责人)

3.“面向宫颈癌HPV分型模型的生物序列比较及分类方法研究”国家自然科学基金,基金号:61001214,2011.1- 2013.12, 24万(负责人)

4.“融合临床突变与序列的多重信息研究乳腺癌BRCA1/2基因突变区域”浙江省自然科学基金,基金号:Y2100930,2011.1- 2013.12, 10万(负责人)

5.“卵巢癌化疗反应基因标志物辨识研究”浙江省自然科学基金,基金号:Z2090299,2010.1- 2012.12, 35万(主要成员,3/7)

6.“与生物序列结构、功能有关的数学方法研究”,国家自然科学基金,基金号:10871219,2009.1- 2011.12, 23万(参与成员,6/9)

7.“数学方法在计算分子生物学中的应用”,国家自然科学基金,基金号:10571019,2006.1- 2008.12, 24万(参与成员,8/9)

二、发表论文

1.Qi Dai*, Yan Li, Xiaoqing Liu, Yuhua Yao, Yunjie Cao, Pingan He. Comparison study on statistical features of predicted secondary structures for protein structural class prediction: From content to position.BMC Bioinformatics, 2013, 14: 152.

2.Qi Dai*,Xiaoqing Liu, Yuhua Yao, Fukun Zhao. Using Markov model to improve word normalization algorithm for biological sequence comparison.Amino Acids, 2012, DOI 10.1007/s00726-011-0906-2.

3. Qi Dai*, Xiaodong Guo, Lihua Li.Sequence comparison via polar coordinates representation and curve tree.Journal of Theoretical Biology, 2012, 292: 78-85.

4.Qi Dai*, Lihua Li, Xiaoqing Liu, Yuhua Yao, Fukun Zhao, Michael Zhang. Integrating Overlapping Structures and Background Information of Words Significantly Improves Biological Sequence Comparison.PLOS one, 2011. 6(11): e26779.

5.Qi Dai*, Wu Li, Lihua Li.Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features.Journal of Computational Chemistry, 2011, 32: 3393-3398.

6.Qi Dai*, Xiaoqing Liu, Yuhua Yao, Fukun Zhao. Numerical characteristics of word frequencies and their application to dissimilarity measure for sequence comparison.Journal of Theoretical Biology, 2011, 276(1): 174-180.

7.Xiaoqing Liu,Qi Dai*, Lihua Li, Zerong He.An efficient binomial model-based measure for sequence comparison and its application.J Biomol Struct Dyn,2011, 28(5):833-843.

8.Xiaoqing Liu,Qi Dai*, Lihua Li, Zhilong Xiu.Resistant mechanism against nelfinavir of subtype C human immunodeficiency virus type 1 proteases.Journal of Molecular Structure, 2011, 986: 30-38.

9.Qi Dai*, Xiaoqing Liu, Lihua Li, Yuhua Yao, Bin Han, Lei Zhu. Using Gaussian Model to Improve Biological Sequence Comparison.Journal of Computational Chemistry, 2010, 31: 351-361.

10.Shuyan Ding,Qi Dai, Hongmei Liu, Tianming Wang. A simple feature representation vector for phylogenetic analysis of DNA sequences,Journal of Theoretical Biology,2010, 265(4):618-623.

11.Yuhua Yao*,Qi Dai, Ling Li, Xu-Ying Nan, Ping-An He, Yao-Zhou Zhang. Similarity/dissimilarity studies of protein sequences based on a new 2D graphical representation.Journal of Computational Chemistry, 2010, 31(5): 1045-1052.

12.Qi Dai*, Yanchun Yang, Tianming Wang. Markov model plus k-word distributions: A synergy that produces novel statistical measures for sequence comparison,Bioinformatics, 2008, doi: 10.1093/bioinformatics/btn436.

13.Qi Dai*, Tianming Wang. Comparison study on k-word statistical measures for protein: from sequence to 'sequence space'.BMC Bioinformatics, 2008, revised.

14.Qi Dai*, Tianming Wang. Use of linear regression model to compare RNA secondary structures, Journal of Theoretical Biology, 2008, 253(4):854-60

15.Qi Dai*, Tianming Wang. Use of statistical measures for analyzing RNA secondary structures,Journal of Computational Chemistry, 2008, 29: 1292-1305.

16.Yuhua Yao,Qi Dai, Xu-Ying Nan, Ping-An He, Zuo-Ming Nie, Song-Ping Zhou, Yao-Zhou Zhang. Analysis of similarity/dissimilarity of DNA sequences based on a class of 2D graphical representation ,Journal of Computational Chemistry, 2008, 29: 1632-1639.

17.Yuhua Yao,Qi Dai, Chun Li, Ping-An He, Xu-Ying Nan, Yao-Zhou Zhang. Analysis of similarity/dissimilarity of DNA sequences based on a class of 2D graphical representation ,Proteins: Structure, Function, and Bioinformatics, 2008, 10.1002/prot.22110.

18.Qi Dai*, Xiaoqing Liu, Tianming Wang. C(i,j) matrix: A better numerical characterization for graphical representations of biological sequences,Journal of Theoretical Biology, 2007, 247: 103-109.

19.Qi Dai*, Xiaoqing Liu, Tianming Wang, Vukicevic, Damir. Linear regression model of DNA sequences and its application,Journal of Computational Chemistry, 2007, 28: 1434-1445.

20.Qi Dai*, Xiaoqing Liu, Tianming Wang. Analysis of protein sequences and their secondary structures based on transition matrices.Journal of Molecular Structure-THEOCHEM, 2007, 803: 115-122.

21.Qi Dai*, Xiaoqing Liu, Tianming Wang. Numerical characterization of DNA sequences based on the k-step Markov chain transition probability .Journal of Computational Chemistry, 2006, 27: 1830-1842.

22.Qi Dai*, Xiaoqing Liu, Tianming Wang. A novel 2D graphical representation of DNA sequences and its application.Journal of Molecular Graphics & Modelling, 2006, 25: 340-344.

23.Xiaoqing Liu,Qi Dai, Zhilong Xiu, Tianming Wang, PNN-curve: A new 2D graphical representation of DNA sequences and its application.Journal of Theoretical Biology, 2006, 243: 555-561.

三、软件情况

1.PSCP-PSSE. An integrated computational software which implements sixteen statistical features of predicted secondary structures from content to position for protein structural class prediction ( http://bioinfo.zstu.edu.cn/PSCP-PSSE).

2.Mplusd. An integrated computational software which implements four statistical similarity measures proposed by us to measure the (dis)similarity of biological sequences.

3.SMPS-SS. An integrated computational software which implements six statistical measures for protein comparison, where the statistical measures are based on protein sequence or protein 'sequence space'.

以上内容源自网络公开信息,仅作学术交流之目的,非为商业用途。
如若涉及侵权事宜,请及时与我们联络,我们将即刻修正或删除相关内容。
确定
匹配导师

资料审核中

您的资料已提交成功!

我们的工作人员会将会在3-5个工作日内和您联系

返回